虎泰克博客

SQL Join的一些总结


一.Join语法概述 join 用于多表中字段之间的联系,语法如下: 复制代码 代码如下:...

一.Join语法概述

join 用于多表中字段之间的联系,语法如下:

复制代码 代码如下:

... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona

table1:左表;table2:右表。

JOIN 按照功能大致分为如下三类:

INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。

LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。

RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。

注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join.

接下来给出一个列子用于解释下面几种分类。如下两个表(A,B)

复制代码 代码如下:

mysql> select A.id,A.name,B.name from A,B where A.id=B.id;
+----+-----------+-------------+
| id | name       | name             |
+----+-----------+-------------+
|  1 | Pirate       | Rutabaga      |
|  2 | Monkey    | Pirate            |
|  3 | Ninja         | Darth Vader |
|  4 | Spaghetti  | Ninja             |
+----+-----------+-------------+
4 rows in set (0.00 sec)

二.Inner join

内连接,也叫等值连接,inner join产生同时符合A和B的一组数据。

复制代码 代码如下:

mysql> select * from A inner join B on A.name = B.name;
+----+--------+----+--------+
| id | name   | id | name   |
+----+--------+----+--------+
|  1 | Pirate |  2 | Pirate |
|  3 | Ninja  |  4 | Ninja  |
+----+--------+----+--------+

三.Left join

复制代码 代码如下:

mysql> select * from A left join B on A.name = B.name;
#或者:select * from A left outer join B on A.name = B.name;

+----+-----------+------+--------+
| id | name      | id   | name   |
+----+-----------+------+--------+
|  1 | Pirate    |    2 | Pirate |
|  2 | Monkey    | NULL | NULL   |
|  3 | Ninja     |    4 | Ninja  |
|  4 | Spaghetti | NULL | NULL   |
+----+-----------+------+--------+
4 rows in set (0.00 sec)

left join,(或left outer join:在Mysql中两者等价,推荐使用left join.)左连接从左表(A)产生一套完整的记录,与匹配的记录(右表(B)) .如果没有匹配,右侧将包含null。

如果想只从左表(A)中产生一套记录,但不包含右表(B)的记录,可以通过设置where语句来执行,如下:

复制代码 代码如下:

mysql> select * from A left join B on A.name=B.name where A.id is null or B.id is null;
+----+-----------+------+------+
| id | name      | id   | name |
+----+-----------+------+------+
|  2 | Monkey    | NULL | NULL |
|  4 | Spaghetti | NULL | NULL |
+----+-----------+------+------+
2 rows in set (0.00 sec)


同理,还可以模拟inner join. 如下:

复制代码 代码如下:

mysql> select * from A left join B on A.name=B.name where A.id is not null and B.id is not null;
+----+--------+------+--------+
| id | name   | id   | name   |
+----+--------+------+--------+
|  1 | Pirate |    2 | Pirate |
|  3 | Ninja  |    4 | Ninja  |
+----+--------+------+--------+
2 rows in set (0.00 sec)

求差集:

根据上面的例子可以求差集,如下:

复制代码 代码如下:

SELECT * FROM A LEFT JOIN B ON A.name = B.name
WHERE B.id IS NULL
union
SELECT * FROM A right JOIN B ON A.name = B.name
WHERE A.id IS NULL;
# 结果
    +------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    2 | Monkey    | NULL | NULL        |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+

四.Right join

复制代码 代码如下:

mysql> select * from A right join B on A.name = B.name;
+------+--------+----+-------------+
| id   | name   | id | name        |
+------+--------+----+-------------+
| NULL | NULL   |  1 | Rutabaga    |
|    1 | Pirate |  2 | Pirate      |
| NULL | NULL   |  3 | Darth Vader |
|    3 | Ninja  |  4 | Ninja       |
+------+--------+----+-------------+
4 rows in set (0.00 sec)

同left join。

五.Cross join

cross join:交叉连接,得到的结果是两个表的乘积,即笛卡尔积

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

复制代码 代码如下:

mysql> select * from A cross join B;
+----+-----------+----+-------------+
| id | name      | id | name        |
+----+-----------+----+-------------+
|  1 | Pirate    |  1 | Rutabaga    |
|  2 | Monkey    |  1 | Rutabaga    |
|  3 | Ninja     |  1 | Rutabaga    |
|  4 | Spaghetti |  1 | Rutabaga    |
|  1 | Pirate    |  2 | Pirate      |
|  2 | Monkey    |  2 | Pirate      |
|  3 | Ninja     |  2 | Pirate      |
|  4 | Spaghetti |  2 | Pirate      |
|  1 | Pirate    |  3 | Darth Vader |
|  2 | Monkey    |  3 | Darth Vader |
|  3 | Ninja     |  3 | Darth Vader |
|  4 | Spaghetti |  3 | Darth Vader |
|  1 | Pirate    |  4 | Ninja       |
|  2 | Monkey    |  4 | Ninja       |
|  3 | Ninja     |  4 | Ninja       |
|  4 | Spaghetti |  4 | Ninja       |
+----+-----------+----+-------------+
16 rows in set (0.00 sec)

#再执行:mysql> select * from A inner join B; 试一试

#在执行mysql> select * from A cross join B on A.name = B.name; 试一试

实际上,在 MySQL 中(仅限于 MySQL) CROSS JOIN 与 INNER JOIN 的表现是一样的,在不指定 ON 条件得到的结果都是笛卡尔积,反之取得两个表完全匹配的结果。 INNER JOIN 与 CROSS JOIN 可以省略 INNER 或 CROSS 关键字,因此下面的 SQL 效果是一样的:

复制代码 代码如下:

... FROM table1 INNER JOIN table2
... FROM table1 CROSS JOIN table2
... FROM table1 JOIN table2

六.Full join

复制代码 代码如下:

mysql> select * from A left join B on B.name = A.name
    -> union
    -> select * from A right join B on B.name = A.name;
+------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    1 | Pirate    |    2 | Pirate      |
|    2 | Monkey    | NULL | NULL        |
|    3 | Ninja     |    4 | Ninja       |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+
6 rows in set (0.00 sec)

全连接产生的所有记录(双方匹配记录)在表A和表B。如果没有匹配,则对面将包含null。

七.性能优化
1.显示(explicit) inner join VS 隐式(implicit) inner join

如:

复制代码 代码如下:

select * from
table a inner join table b
on a.id = b.id;

VS

复制代码 代码如下:

select a.*, b.*
from table a, table b
where a.id = b.id;

我在数据库中比较(10w数据)得之,它们用时几乎相同,第一个是显示的inner join,后一个是隐式的inner join。

2.left join/right join VS inner join

尽量用inner join.避免 LEFT JOIN 和 NULL.

在使用left join(或right join)时,应该清楚的知道以下几点:
(1). on与 where的执行顺序

    ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。

所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。如:

PASS

复制代码 代码如下:

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name
left join D on D.id = C.id
where C.status>1 and D.status=1;

Great

复制代码 代码如下:

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name and C.status>1
left join D on D.id = C.id and D.status=1

从上面例子可以看出,尽可能满足ON的条件,而少用Where的条件。从执行性能来看第二个显然更加省时。

(2).注意ON 子句和 WHERE 子句的不同

如作者举了一个列子:

复制代码 代码如下:

mysql> SELECT * FROM product LEFT JOIN product_details
       ON (product.id = product_details.id)
       AND product_details.id=2;
+----+--------+------+--------+-------+
| id | amount | id   | weight | exist |
+----+--------+------+--------+-------+
|  1 |    100 | NULL |   NULL |  NULL |
|  2 |    200 |    2 |     22 |     0 |
|  3 |    300 | NULL |   NULL |  NULL |
|  4 |    400 | NULL |   NULL |  NULL |
+----+--------+------+--------+-------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM product LEFT JOIN product_details
       ON (product.id = product_details.id)
       WHERE product_details.id=2;
+----+--------+----+--------+-------+
| id | amount | id | weight | exist |
+----+--------+----+--------+-------+
|  2 |    200 |  2 |     22 |     0 |
+----+--------+----+--------+-------+
1 row in set (0.01 sec)

从上可知,第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行。

(3).尽量避免子查询,而用join

往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。如下:

PASS

复制代码 代码如下:

insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id);

Great

复制代码 代码如下:

insert into t1(a1) 
select b1 from t2 
left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id  
where t1.id is null; 


Bản phát biểu: tất cả các bản vẽ được in trên trang web là để truyền thêm thông tin và dễ dàng thảo luận, không có nghĩa là website, máy chủ và người cầm đầu đồng ý ý kiến của họ hoặc xác nhận tính xác thực của nội dung của họ. Nội dung các bài báo chỉ có liên quan. Nếu quyền của tác giả gốc bị vi phạm, xin liên lạc với quản trị website.

Ký vào để ghi chú

Ghi chú

    Không có dữ liệu